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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given in
Section 1.2, and to study its properties. This requires that we deal with rows and columns in the same way.
While it has been our custom to write the n-tuples in Rn as columns, in this section we will frequently
write them as rows. Subspaces, independence, spanning, and dimension are defined for rows using matrix
operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1

Let A and B denote m×n matrices.

1. If A→ B by elementary row operations, then row A = row B.

2. If A→ B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A→ B by a single
row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A→ B either interchanges
two rows, multiplies a row by a nonzero constant, or adds a multiple of a row to a different row. We leave
the first two cases to the reader. In the last case, suppose that a times row p is added to row q where p < q.
Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm, and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A→ R by elementary row operations where R is a row-echelon matrix.
Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This proves
(1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr} is
independent because the leading 1s are in different rows (and have zeros below and to the left of them).
Let U denote the subspace of all columns in Rm in which the last m−r entries are zero. Then dim U = r (it
is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a basis of U by Theorem 5.2.7.
Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1. Let A

be any matrix and suppose A is carried to some row-echelon matrix R by row operations. Note that R is
not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the number of leading 1s in R,
that is the number of nonzero rows of R. The fact that this number does not depend on the choice of R was
not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows that

rank A = dim ( row A)

and hence that rank A is independent of R.

Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of




1 1 2 3
2 4 1 0
1 5 −4 −9


. This matrix has row-echelon form




1 1 2 3
0 1 −3

2 −3
0 0 0 0


, so {(1, 1, 2, 3), (0, 1, −3

2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem

Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are a
basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover, R = UA

for some invertible matrix U by Theorem 2.5.1. Now write A =
[

c1 c2 . . . cn

]
where c1, c2, . . . , cn

are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn

]
=
[

Uc1 Uc2 · · · Ucn

]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2. So, to
prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr} is a basis of
col A. First, D is linearly independent because U is invertible (verify), so we show that, for each j, column
c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear combination of the Uc ji ,
say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 +a2c j2 + · · ·+arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =




1 2 2 −1
3 6 5 0
1 2 1 2


 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows:



1 2 2 −1
3 6 5 0
1 2 1 2


→




1 2 2 −1
0 0 −1 3
0 0 −1 3


→




1 2 2 −1
0 0 −1 3
0 0 0 0




Hence rank A = 2, and {
[

1 2 2 −1
]

,
[

0 0 1 −3
]
} is a basis of row A by Lemma 5.4.2.

Since the leading 1s are in columns 1 and 3 of the row-echelon matrix, Theorem 5.4.1 shows that

columns 1 and 3 of A are a basis








1
3
1


 ,




2
5
1





 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows because
the rows of A are independent (respectively span row A) if and only if their transposes are independent
(respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m× n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A≤ m and rank A≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV) whenever U and V are invertible.
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Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV) = rank (AV)T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3

Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV)⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV) ⊆ col A.

If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV) in the same way. This proves (1).

As to (2), we have col
[
(UA)T

]
= col (ATUT ) ⊆ col (AT ) by (1), from which row (UA)⊆ row A. If

U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB≤ rank A and rank AB≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null space
null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) = col (A)
by Example 5.1.8, so dim [ im (A)]= dim [col (A)]= r. Hence Theorem 5.4.1 provides a method of finding
a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2

Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are a
basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the n− r

basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] = n− r. So
let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn} of Rn (by



294 Vector Space Rn

Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then n− k = r by the
above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1+ · · ·+akxk+ak+1xk+1+ · · ·+anxn where
the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1 + · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1 + · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the xi

shows that ti = 0 for every i.

Example 5.4.3

If A =




1 −2 1 1
−1 2 0 1

2 −4 1 0


, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is




1 −2 1 1 0
−1 2 0 1 0

2 −4 1 0 0


→




1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0




Hence r = rank (A) = 2. Here, im (A) = col (A) has basis








1
−1

2


 ,




1
0
1





 by Theorem 5.4.1

because the leading 1s are in columns 1 and 3. In particular, dim [ im (A)] = 2 = r as in
Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced matrix
that x1 = 2s+ t and x3 =−2t, so the general solution is

x =




x1

x2

x3

x4


=




2s+ t

s

−2t

t


= sx1 + tx2 where x1 =




2
1
0
0


 , and x2 =




1
0
−2

1


 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to verify
directly that {x1, x2} is independent in this case.) In particular, dim [null (A)] = 2 = n− r, as
Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A≤m and rank A≤ n, and
it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A, Theorem 5.2.2
shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent for every b in Rm, and
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that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies x = 0. The next two useful
theorems improve on both these results, and relate them to when the rank of A is n or m.

Theorem 5.4.3

The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1)⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theorem 5.2.8.
This is (2).

(2)⇒ (3). By (2), row A = Rn, so rank A = n. This means dim (col A) = n. Since the n columns of
A span col A, they are independent by Theorem 5.2.7.

(3)⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.

(4)⇒ (5). Given (4), take C = (AT A)−1AT .

(5)⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A) = n,
and (1) follows.

Theorem 5.4.4

The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1)⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.

(2)⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows of A

span row A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying Theo-
rem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).

(4)⇒ (5). Given (4), take C = AT (AAT )
−1 in (5).

(5)⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote column j

of C and Im respectively. Given b inRm, write b=∑m
j=1 r je j, r j in R. Then Ax=b holds with x=∑m

j=1 r jc j

as the reader can verify.

(6)⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1) follows.

Example 5.4.4

Show that

[
3 x+ y+ z

x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =




1 x

1 y

1 z


 has independent columns

because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to the
invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of A are not
independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as such, have real
eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row and
column spaces of A and determine the rank of A.




2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2


a.




2 −1 1
−2 1 1

4 −2 3
−6 3 0


b.




1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3
−1 1 7 −7 1


c.

[
1 2 −1 3
−3 −6 3 −2

]
d.

Exercise 5.4.2 In each case find a basis of the subspace
U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span








1
1
0
0


 ,




0
0
1
1


 ,




1
0
1
0


 ,




0
1
0
1
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d.

U = span








1
5
−6


 ,




2
6
−8


 ,




3
7

−10


 ,




4
8

12







Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4×3 and rank A = 2, can A have indepen-
dent columns? Independent rows? Explain.

c. If A is an m×n matrix and rank A = m, show that
m≤ n.

d. Can a nonsquare matrix have its rows independent
and its columns independent? Explain.

e. Can the null space of a 3× 6 matrix have dimen-
sion 2? Explain.

f. Suppose that A is 5×4 and null (A)=Rx for some
column x 6= 0. Can dim ( im A) = 2?

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Exercise 5.4.5 If A is m× n and B is n×m, show that
AB = 0 if and only if col B⊆ null A.

Exercise 5.4.6 Show that the rank does not change when
an elementary row or column operation is performed on
a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of The-
orem 5.4.2.

a. A =




3 1 1
2 0 1
4 2 1
1 −1 1




b. A =




3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2
−2 0 −4 −4 −2




Exercise 5.4.8 Let A = cr where c 6= 0 is a column in
Rm and r 6= 0 is a row in Rn.

a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A= {0}.

b. If null A = {0}, show that {c1, . . . , cn} is inde-
pendent.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A⊆ null A.

b. Conclude that if A2 = 0, then rank A≤ n
2 .

c. Find a matrix A for which col A = null A.

Exercise 5.4.11 Let B be m× n and let AB be k× n. If
rank B= rank (AB), show that null B= null (AB). [Hint:
Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

Exercise 5.4.13 Let A be an m × n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show that
b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only if
rank A = rank [A b]. [Hint: Exercises 5.4.12 and
5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

Exercise 5.4.16 Let X be a k×m matrix. If I is the
m×m identity matrix, show that I +XT X is invertible.

[Hint: I +XT X = AT A where A =

[
I

X

]
in block

form.]



298 Vector Space Rn

Exercise 5.4.17 If A is m× n of rank r, show that A

can be factored as A = PQ where P is m× r with r in-
dependent columns, and Q is r× n with r independent

rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3,

and write U−1 =

[
U1 U2

U3 U4

]
and V−1 =

[
V1 V2

V3 V4

]
in

block form, where U1 and V1 are r× r.]

Exercise 5.4.18

a. Show that if A and B have independent columns,
so does AB.

b. Show that if A and B have independent rows, so
does AB.

Exercise 5.4.19 A matrix obtained from A by deleting
rows and columns is called a submatrix of A. If A has an
invertible k× k submatrix, show that rank A ≥ k. [Hint:
Show that row and column operations carry

A→
[

Ik P

0 Q

]
in block form.] Remark: It can be shown

that rank A is the largest integer r such that A has an in-
vertible r× r submatrix.

5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for
example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and dimension
to clarify the diagonalization process, reveal some new results, and prove some theorems which could not
be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and is used
throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are n×n matrices, we say that A and B are similar, and write A∼ B, if B = P−1AP for
some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only if it is
similar to a diagonal matrix.

If A∼ B, then necessarily B∼ A. To see why, suppose that B = P−1AP. Then A = PBP−1 = Q−1BQ

where Q = P−1 is invertible. This proves the second of the following properties of similarity (the others
are left as an exercise):

1. A∼ A for all square matrices A.

2. If A∼ B, then B∼ A. (5.2)

3. If A∼ B and B∼ A, then A∼C.

These properties are often expressed by saying that the similarity relation∼ is an equivalence relation on
the set of n×n matrices. Here is an example showing how these properties are used.


