5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given in Section 1.2, and to study its properties. This requires that we deal with rows and columns in the same way. While it has been our custom to write the n-tuples in \mathbb{R}^{n} as columns, in this section we will frequently write them as rows. Subspaces, independence, spanning, and dimension are defined for rows using matrix operations, just as for columns. If A is an $m \times n$ matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of \mathbb{R}^{m} spanned by the columns of A. The row space, row A, of A is the subspace of \mathbb{R}^{n} spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1

Let A and B denote $m \times n$ matrices.

1. If $A \rightarrow B$ by elementary row operations, then row $A=$ row B.
2. If $A \rightarrow B$ by elementary column operations, then $\operatorname{col} A=\operatorname{col} B$.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when $A \rightarrow B$ by a single row operation. Let $R_{1}, R_{2}, \ldots, R_{m}$ denote the rows of A. The row operation $A \rightarrow B$ either interchanges two rows, multiplies a row by a nonzero constant, or adds a multiple of a row to a different row. We leave the first two cases to the reader. In the last case, suppose that a times row p is added to row q where $p<q$. Then the rows of B are $R_{1}, \ldots, R_{p}, \ldots, R_{q}+a R_{p}, \ldots, R_{m}$, and Theorem 5.1.1 shows that

$$
\operatorname{span}\left\{R_{1}, \ldots, R_{p}, \ldots, R_{q}, \ldots, R_{m}\right\}=\operatorname{span}\left\{R_{1}, \ldots, R_{p}, \ldots, R_{q}+a R_{p}, \ldots, R_{m}\right\}
$$

That is, row $A=$ row B.
If A is any matrix, we can carry $A \rightarrow R$ by elementary row operations where R is a row-echelon matrix. Hence row $A=$ row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.
2. The columns of R containing leading ones are a basis of $\operatorname{col} R$.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This proves (1).

Let $\mathbf{c}_{j_{1}}, \mathbf{c}_{j_{2}}, \ldots, \mathbf{c}_{j_{r}}$ denote the columns of R containing leading 1s. Then $\left\{\mathbf{c}_{j_{1}}, \mathbf{c}_{j_{2}}, \ldots, \mathbf{c}_{j_{r}}\right\}$ is independent because the leading 1 s are in different rows (and have zeros below and to the left of them). Let U denote the subspace of all columns in \mathbb{R}^{m} in which the last $m-r$ entries are zero. Then $\operatorname{dim} U=r$ (it is just \mathbb{R}^{r} with extra zeros). Hence the independent set $\left\{\mathbf{c}_{j_{1}}, \mathbf{c}_{j_{2}}, \ldots, \mathbf{c}_{j_{r}}\right\}$ is a basis of U by Theorem 5.2.7. Since each $\mathbf{c}_{j_{i}}$ is in col R, it follows that $\operatorname{col} R=U$, proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1. Let A be any matrix and suppose A is carried to some row-echelon matrix R by row operations. Note that R is not unique. In Section 1.2 we defined the rank of A, denoted $\operatorname{rank} A$, to be the number of leading 1 s in R, that is the number of nonzero rows of R. The fact that this number does not depend on the choice of R was not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows that

$$
\operatorname{rank} A=\operatorname{dim}(\operatorname{row} A)
$$

and hence that $\operatorname{rank} A$ is independent of R.
Lemma 5.4.2 can be used to find bases of subspaces of \mathbb{R}^{n} (written as rows). Here is an example.

Example 5.4.1

Find a basis of $U=\operatorname{span}\{(1,1,2,3),(2,4,1,0),(1,5,-4,-9)\}$.
Solution. U is the row space of $\left[\begin{array}{rrrr}1 & 1 & 2 & 3 \\ 2 & 4 & 1 & 0 \\ 1 & 5 & -4 & -9\end{array}\right]$. This matrix has row-echelon form
$\left[\begin{array}{rrrr}1 & 1 & 2 & 3 \\ 0 & 1 & -\frac{3}{2} & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$, so $\left\{(1,1,2,3),\left(0,1,-\frac{3}{2},-3\right)\right\}$ is basis of U by Lemma 5.4.2.
Note that $\{(1,1,2,3),(0,2,-3,-6)\}$ is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem

Let A denote any $m \times n$ matrix of rank r. Then

$$
\operatorname{dim}(\operatorname{col} A)=\operatorname{dim}(\operatorname{row} A)=r
$$

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.
2. If the leading 1 s lie in columns $j_{1}, j_{2}, \ldots, j_{r}$ of R, then columns $j_{1}, j_{2}, \ldots, j_{r}$ of A are a basis of $\operatorname{col} A$.

Proof. We have row $A=$ row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover, $R=U A$ for some invertible matrix U by Theorem 2.5.1. Now write $A=\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{n}\end{array}\right]$ where $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ are the columns of A. Then

$$
R=U A=U\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right]=\left[\begin{array}{llll}
U \mathbf{c}_{1} & U \mathbf{c}_{2} & \cdots & U \mathbf{c}_{n}
\end{array}\right]
$$

Thus, in the notation of (2), the set $B=\left\{U \mathbf{c}_{j_{1}}, U \mathbf{c}_{j_{2}}, \ldots, U \mathbf{c}_{j_{r}}\right\}$ is a basis of col R by Lemma 5.4.2. So, to prove (2) and the fact that $\operatorname{dim}(\operatorname{col} A)=r$, it is enough to show that $D=\left\{\mathbf{c}_{j_{1}}, \mathbf{c}_{j_{2}}, \ldots, \mathbf{c}_{j_{r}}\right\}$ is a basis of $\operatorname{col} A$. First, D is linearly independent because U is invertible (verify), so we show that, for each j, column \mathbf{c}_{j} is a linear combination of the $\mathbf{c}_{j_{i}}$. But $U \mathbf{c}_{j}$ is column j of R, and so is a linear combination of the $U \mathbf{c}_{j_{i}}$, say $U \mathbf{c}_{j}=a_{1} U \mathbf{c}_{j_{1}}+a_{2} U \mathbf{c}_{j_{2}}+\cdots+a_{r} U \mathbf{c}_{j_{r}}$ where each a_{i} is a real number.

Since U is invertible, it follows that $\mathbf{c}_{j}=a_{1} \mathbf{c}_{j_{1}}+a_{2} \mathbf{c}_{j_{2}}+\cdots+a_{r} \mathbf{c}_{j_{r}}$ and the proof is complete.

Example 5.4.2

Compute the rank of $A=\left[\begin{array}{rrrr}1 & 2 & 2 & -1 \\ 3 & 6 & 5 & 0 \\ 1 & 2 & 1 & 2\end{array}\right]$ and find bases for $\operatorname{row} A$ and $\operatorname{col} A$.
Solution. The reduction of A to row-echelon form is as follows:

$$
\left[\begin{array}{rrrr}
1 & 2 & 2 & -1 \\
3 & 6 & 5 & 0 \\
1 & 2 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 2 & -1 \\
0 & 0 & -1 & 3 \\
0 & 0 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 2 & -1 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence $\operatorname{rank} A=2$, and $\left\{\left[\begin{array}{cccc}1 & 2 & 2 & -1\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 1 & -3\end{array}\right]\right\}$ is a basis of row A by Lemma 5.4.2. Since the leading 1s are in columns 1 and 3 of the row-echelon matrix, Theorem 5.4.1 shows that columns 1 and 3 of A are a basis $\left\{\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]\right\}$ of $\operatorname{col} A$.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows because the rows of A are independent (respectively span row A) if and only if their transposes are independent (respectively span $\operatorname{col} A$).

Corollary 5.4.1

If A is any matrix, then $\operatorname{rank} A=\operatorname{rank}\left(A^{T}\right)$.

If A is an $m \times n$ matrix, we have $\operatorname{col} A \subseteq \mathbb{R}^{m}$ and row $A \subseteq \mathbb{R}^{n}$. Hence Theorem 5.2.8 shows that $\operatorname{dim}(\operatorname{col} A) \leq \operatorname{dim}\left(\mathbb{R}^{m}\right)=m$ and $\operatorname{dim}(\operatorname{row} A) \leq \operatorname{dim}\left(\mathbb{R}^{n}\right)=n$. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an $m \times n$ matrix, then $\operatorname{rank} A \leq m$ and $\operatorname{rank} A \leq n$.

Corollary 5.4.3

$\operatorname{rank} A=\operatorname{rank}(U A)=\operatorname{rank}(A V)$ whenever U and V are invertible.

Proof. Lemma 5.4.1 gives rank $A=\operatorname{rank}(U A)$. Using this and Corollary 5.4.1 we get

$$
\operatorname{rank}(A V)=\operatorname{rank}(A V)^{T}=\operatorname{rank}\left(V^{T} A^{T}\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank} A
$$

The next corollary requires a preliminary lemma.

Lemma 5.4.3

Let A, U, and V be matrices of sizes $m \times n, p \times m$, and $n \times q$ respectively.

1. $\operatorname{col}(A V) \subseteq \operatorname{col} A$, with equality if $V V^{\prime}=I_{n}$ for some V^{\prime}.
2. row $(U A) \subseteq$ row A, with equality if $U^{\prime} U=I_{m}$ for some U^{\prime}.

Proof. For (1), write $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{q}\right]$ where \mathbf{v}_{j} is column j of V. Then we have $A V=\left[A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{q}\right]$, and each $A \mathbf{v}_{j}$ is in $\operatorname{col} A$ by Definition 2.4. It follows that $\operatorname{col}(A V) \subseteq \operatorname{col} A$. If $V V^{\prime}=I_{n}$, we obtain $\operatorname{col} A=\operatorname{col}\left[(A V) V^{\prime}\right] \subseteq \operatorname{col}(A V)$ in the same way. This proves (1).

As to (2), we have col $\left[(U A)^{T}\right]=\operatorname{col}\left(A^{T} U^{T}\right) \subseteq \operatorname{col}\left(A^{T}\right)$ by (1), from which row $(U A) \subseteq$ row A. If $U^{\prime} U=I_{m}$, this is equality as in the proof of (1).

Corollary 5.4.4

If A is $m \times n$ and B is $n \times m$, then $\operatorname{rank} A B \leq \operatorname{rank} A$ and $\operatorname{rank} A B \leq \operatorname{rank} B$.

Proof. By Lemma 5.4.3, $\operatorname{col}(A B) \subseteq \operatorname{col} A$ and row $(B A) \subseteq$ row A, so Theorem 5.4.1 applies.
In Section 5.1 we discussed two other subspaces associated with an $m \times n$ matrix A : the null space null (A) and the image space im (A)

$$
\operatorname{null}(A)=\left\{\mathbf{x} \text { in } \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \text { and } \operatorname{im}(A)=\left\{A \mathbf{x} \mid \mathbf{x} \text { in } \mathbb{R}^{n}\right\}
$$

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have $\operatorname{im}(A)=\operatorname{col}(A)$ by Example 5.1.8, so $\operatorname{dim}[\operatorname{im}(A)]=\operatorname{dim}[\operatorname{col}(A)]=r$. Hence Theorem 5.4.1 provides a method of finding a basis of $\operatorname{im}(A)$. This is recorded as part (2) of the following theorem.

Theorem 5.4.2

Let A denote an $m \times n$ matrix of rank r. Then

1. The $n-r$ basic solutions to the system $A \mathbf{x}=\mathbf{0}$ provided by the gaussian algorithm are a basis of null (A), so $\operatorname{dim}[\operatorname{null}(A)]=n-r$.
2. Theorem 5.4.1 provides a basis of $\operatorname{im}(A)=\operatorname{col}(A)$, and $\operatorname{dim}[\operatorname{im}(A)]=r$.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the $n-r$ basic solutions of $A \mathbf{x}=\mathbf{0}$. Hence using Theorem 5.2.7, it suffices to show that $\operatorname{dim}[\operatorname{null}(A)]=n-r$. So let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ be a basis of $\operatorname{null}(A)$, and extend it to a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$ of \mathbb{R}^{n} (by

Theorem 5.2.6). It is enough to show that $\left\{A \mathbf{x}_{k+1}, \ldots, A \mathbf{x}_{n}\right\}$ is a basis of $\operatorname{im}(A)$; then $n-k=r$ by the above and so $k=n-r$ as required.

Spanning. Choose $A \mathbf{x}$ in $\operatorname{im}(A), \mathbf{x}$ in \mathbb{R}^{n}, and write $\mathbf{x}=a_{1} \mathbf{x}_{1}+\cdots+a_{k} \mathbf{x}_{k}+a_{k+1} \mathbf{x}_{k+1}+\cdots+a_{n} \mathbf{x}_{n}$ where the a_{i} are in \mathbb{R}. Then $A \mathbf{x}=a_{k+1} A \mathbf{x}_{k+1}+\cdots+a_{n} A \mathbf{x}_{n}$ because $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \subseteq \operatorname{null}(A)$.

Independence. Let $t_{k+1} A \mathbf{x}_{k+1}+\cdots+t_{n} A \mathbf{x}_{n}=\mathbf{0}$, t_{i} in \mathbb{R}. Then $t_{k+1} \mathbf{x}_{k+1}+\cdots+t_{n} \mathbf{x}_{n}$ is in null A, so $t_{k+1} \mathbf{x}_{k+1}+\cdots+t_{n} \mathbf{x}_{n}=t_{1} \mathbf{x}_{1}+\cdots+t_{k} \mathbf{x}_{k}$ for some t_{1}, \ldots, t_{k} in \mathbb{R}. But then the independence of the \mathbf{x}_{i} shows that $t_{i}=0$ for every i.

Example 5.4.3

If $A=\left[\begin{array}{rrrr}1 & -2 & 1 & 1 \\ -1 & 2 & 0 & 1 \\ 2 & -4 & 1 & 0\end{array}\right]$, find bases of $\operatorname{null}(A)$ and $\operatorname{im}(A)$, and so find their dimensions.
Solution. If \mathbf{x} is in $\operatorname{null}(A)$, then $A \mathbf{x}=\mathbf{0}$, so \mathbf{x} is given by solving the system $A \mathbf{x}=\mathbf{0}$. The reduction of the augmented matrix to reduced form is

$$
\left[\begin{array}{rrrr|r}
1 & -2 & 1 & 1 & 0 \\
-1 & 2 & 0 & 1 & 0 \\
2 & -4 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & -2 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Hence $r=\operatorname{rank}(A)=2$. Here, $\operatorname{im}(A)=\operatorname{col}(A)$ has basis $\left\{\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ by Theorem 5.4.1 because the leading 1s are in columns 1 and 3. In particular, $\operatorname{dim}[\operatorname{im}(A)]=2=r$ as in Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x_{1} and x_{3}, so the nonleading variables become parameters: $x_{2}=s$ and $x_{4}=t$. It follows from the reduced matrix that $x_{1}=2 s+t$ and $x_{3}=-2 t$, so the general solution is

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 s+t \\
s \\
-2 t \\
t
\end{array}\right]=s \mathbf{x}_{1}+t \mathbf{x}_{2} \text { where } \mathbf{x}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right], \text { and } \mathbf{x}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1
\end{array}\right]
$$

Hence null (A). But \mathbf{x}_{1} and \mathbf{x}_{2} are solutions (basic), so

$$
\operatorname{null}(A)=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}
$$

However Theorem 5.4.2 asserts that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis of null (A). (In fact it is easy to verify directly that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is independent in this case.) In particular, $\operatorname{dim}[\operatorname{null}(A)]=2=n-r$, as Theorem 5.4.2 asserts.

Let A be an $m \times n$ matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank $A \leq m$ and $\operatorname{rank} A \leq n$, and it is natural to ask when these extreme cases arise. If $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ are the columns of A, Theorem 5.2.2 shows that $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ spans \mathbb{R}^{m} if and only if the system $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{m}, and
that $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ is independent if and only if $A \mathbf{x}=\mathbf{0}, \mathbf{x}$ in \mathbb{R}^{n}, implies $\mathbf{x}=\mathbf{0}$. The next two useful theorems improve on both these results, and relate them to when the rank of A is n or m.

Theorem 5.4.3

The following are equivalent for an $m \times n$ matrix A :

1. $\operatorname{rank} A=n$.
2. The rows of A span \mathbb{R}^{n}.
3. The columns of A are linearly independent in \mathbb{R}^{m}.
4. The $n \times n$ matrix $A^{T} A$ is invertible.
5. $C A=I_{n}$ for some $n \times m$ matrix C.
6. If $A \mathbf{x}=\mathbf{0}, \mathbf{x}$ in \mathbb{R}^{n}, then $\mathbf{x}=\mathbf{0}$.

Proof. (1) $\Rightarrow(2)$. We have $\operatorname{row} A \subseteq \mathbb{R}^{n}$, and $\operatorname{dim}(\operatorname{row} A)=n$ by (1), so row $A=\mathbb{R}^{n}$ by Theorem 5.2.8. This is (2).
(2) \Rightarrow (3). By (2), row $A=\mathbb{R}^{n}$, so rank $A=n$. This means $\operatorname{dim}(\operatorname{col} A)=n$. Since the n columns of A span $\operatorname{col} A$, they are independent by Theorem 5.2.7.
(3) \Rightarrow (4). If $\left(A^{T} A\right) \mathbf{x}=\mathbf{0}, \mathbf{x}$ in \mathbb{R}^{n}, we show that $\mathbf{x}=\mathbf{0}$ (Theorem 2.4.5). We have

$$
\|A \mathbf{x}\|^{2}=(A \mathbf{x})^{T} A \mathbf{x}=\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} \mathbf{0}=\mathbf{0}
$$

Hence $A \mathbf{x}=\mathbf{0}$, so $\mathbf{x}=\mathbf{0}$ by (3) and Theorem 5.2.2.
(4) \Rightarrow (5). Given (4), take $C=\left(A^{T} A\right)^{-1} A^{T}$.
(5) \Rightarrow (6). If $A \mathbf{x}=\mathbf{0}$, then left multiplication by C (from (5)) gives $\mathbf{x}=\mathbf{0}$.
$(6) \Rightarrow(1)$. Given (6), the columns of A are independent by Theorem 5.2.2. Hence $\operatorname{dim}(\operatorname{col} A)=n$, and (1) follows.

Theorem 5.4.4

The following are equivalent for an $m \times n$ matrix A :

1. $\operatorname{rank} A=m$.
2. The columns of A span \mathbb{R}^{m}.
3. The rows of A are linearly independent in \mathbb{R}^{n}.
4. The $m \times m$ matrix $A A^{T}$ is invertible.
5. $A C=I_{m}$ for some $n \times m$ matrix C.
6. The system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for every \boldsymbol{b} in \mathbb{R}^{m}.

Proof. (1) \Rightarrow (2). By (1), $\operatorname{dim}\left(\operatorname{col} A=m\right.$, so $\operatorname{col} A=\mathbb{R}^{m}$ by Theorem 5.2.8.
(2) \Rightarrow (3). By (2), $\operatorname{col} A=\mathbb{R}^{m}$, so rank $A=m$. This means $\operatorname{dim}($ row $A)=m$. Since the m rows of A span row A, they are independent by Theorem 5.2.7.
(3) \Rightarrow (4). We have rank $A=m$ by (3), so the $n \times m$ matrix A^{T} has rank m. Hence applying Theorem 5.4.3 to A^{T} in place of A shows that $\left(A^{T}\right)^{T} A^{T}$ is invertible, proving (4).
(4) \Rightarrow (5). Given (4), take $C=A^{T}\left(A A_{T}\right)^{-1}$ in (5).
(5) \Rightarrow (6). Comparing columns in $A C=I_{m}$ gives $A \mathbf{c}_{j}=\mathbf{e}_{j}$ for each j, where \mathbf{c}_{j} and \mathbf{e}_{j} denote column j of C and I_{m} respectively. Given \mathbf{b} in \mathbb{R}^{m}, write $\mathbf{b}=\sum_{j=1}^{m} r_{j} \mathbf{e}_{j}, r_{j}$ in \mathbb{R}. Then $A \mathbf{x}=\mathbf{b}$ holds with $\mathbf{x}=\sum_{j=1}^{m} r_{j} \mathbf{c}_{j}$ as the reader can verify.
$(6) \Rightarrow(1)$. Given (6), the columns of A span \mathbb{R}^{m} by Theorem 5.2.2. Thus $\operatorname{col} A=\mathbb{R}^{m}$ and (1) follows.

Example 5.4.4

Show that $\left[\begin{array}{cc}3 & x+y+z \\ x+y+z & x^{2}+y^{2}+z^{2}\end{array}\right]$ is invertible if x, y, and z are not all equal.
Solution. The given matrix has the form $A^{T} A$ where $A=\left[\begin{array}{ll}1 & x \\ 1 & y \\ 1 & z\end{array}\right]$ has independent columns because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an $m \times n$ matrix A to the invertibility of the square, symmetric matrices $A^{T} A$ and $A A^{T}$. In fact, even if the columns of A are not independent or do not span \mathbb{R}^{m}, the matrices $A^{T} A$ and $A A^{T}$ are both symmetric and, as such, have real eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row and column spaces of A and determine the rank of A.
a. $\left[\begin{array}{rrrr}2 & -4 & 6 & 8 \\ 2 & -1 & 3 & 2 \\ 4 & -5 & 9 & 10 \\ 0 & -1 & 1 & 2\end{array}\right]$
b. $\left[\begin{array}{rrr}2 & -1 & 1 \\ -2 & 1 & 1 \\ 4 & -2 & 3 \\ -6 & 3 & 0\end{array}\right]$
c. $\left[\begin{array}{rrrrr}1 & -1 & 5 & -2 & 2 \\ 2 & -2 & -2 & 5 & 1 \\ 0 & 0 & -12 & 9 & -3 \\ -1 & 1 & 7 & -7 & 1\end{array}\right]$
d. $\left[\begin{array}{rrrr}1 & 2 & -1 & 3 \\ -3 & -6 & 3 & -2\end{array}\right]$

Exercise 5.4.2 In each case find a basis of the subspace U.
a. $U=\operatorname{span}\{(1,-1,0,3),(2,1,5,1),(4,-2,5,7)\}$
b. $U=\operatorname{span}\{(1,-1,2,5,1),(3,1,4,2,7)$, $(1,1,0,0,0),(5,1,6,7,8)\}$
c. $U=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$
d.
$U=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ 5 \\ -6\end{array}\right],\left[\begin{array}{r}2 \\ 6 \\ -8\end{array}\right],\left[\begin{array}{r}3 \\ 7 \\ -10\end{array}\right],\left[\begin{array}{r}4 \\ 8 \\ 12\end{array}\right]\right\}$

Exercise 5.4.3

a. Can a 3×4 matrix have independent columns? Independent rows? Explain.
b. If A is 4×3 and $\operatorname{rank} A=2$, can A have independent columns? Independent rows? Explain.
c. If A is an $m \times n$ matrix and $\operatorname{rank} A=m$, show that $m \leq n$.
d. Can a nonsquare matrix have its rows independent and its columns independent? Explain.
e. Can the null space of a 3×6 matrix have dimension 2? Explain.
f. Suppose that A is 5×4 and null $(A)=\mathbb{R} \mathbf{x}$ for some column $\mathbf{x} \neq \mathbf{0}$. Can $\operatorname{dim}(\operatorname{im} A)=2$?

Exercise 5.4.4 If A is $m \times n$ show that

$$
\operatorname{col}(A)=\left\{A \mathbf{x} \mid \mathbf{x} \text { in } \mathbb{R}^{n}\right\}
$$

Exercise 5.4.5 If A is $m \times n$ and B is $n \times m$, show that $A B=0$ if and only if $\operatorname{col} B \subseteq$ null A.

Exercise 5.4.6 Show that the rank does not change when an elementary row or column operation is performed on a matrix.

Exercise 5.4.7 In each case find a basis of the null space of A. Then compute rank A and verify (1) of Theorem 5.4.2.
a. $A=\left[\begin{array}{rrr}3 & 1 & 1 \\ 2 & 0 & 1 \\ 4 & 2 & 1 \\ 1 & -1 & 1\end{array}\right]$
b. $A=\left[\begin{array}{rrrrr}3 & 5 & 5 & 2 & 0 \\ 1 & 0 & 2 & 2 & 1 \\ 1 & 1 & 1 & -2 & -2 \\ -2 & 0 & -4 & -4 & -2\end{array}\right]$

Exercise 5.4.8 Let $A=\mathbf{c r}$ where $\mathbf{c} \neq \mathbf{0}$ is a column in \mathbb{R}^{m} and $\mathbf{r} \neq \mathbf{0}$ is a row in \mathbb{R}^{n}.
a. Show that $\operatorname{col} A=\operatorname{span}\{\mathbf{c}\}$ and row $A=\operatorname{span}\{\mathbf{r}\}$.
b. Find $\operatorname{dim}(\operatorname{null} A)$.
c. Show that null $A=$ null \mathbf{r}.

Exercise 5.4.9 Let A be $m \times n$ with columns $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$.
a. If $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ is independent, show null $A=\{\mathbf{0}\}$.
b. If null $A=\{\mathbf{0}\}$, show that $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ is independent.

Exercise 5.4.10 Let A be an $n \times n$ matrix.
a. Show that $A^{2}=0$ if and only if $\operatorname{col} A \subseteq \operatorname{null} A$.
b. Conclude that if $A^{2}=0$, then $\operatorname{rank} A \leq \frac{n}{2}$.
c. Find a matrix A for which $\operatorname{col} A=\operatorname{null} A$.

Exercise 5.4.11 Let B be $m \times n$ and let $A B$ be $k \times n$. If rank $B=\operatorname{rank}(A B)$, show that null $B=\operatorname{null}(A B)$. [Hint: Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank} A$.

Exercise 5.4.13 Let A be an $m \times n$ matrix with columns $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$. If $\operatorname{rank} A=n$, show that $\left\{A^{T} \mathbf{c}_{1}, A^{T} \mathbf{c}_{2}, \ldots, A^{T} \mathbf{c}_{n}\right\}$ is a basis of \mathbb{R}^{n}.

Exercise 5.4.14 If A is $m \times n$ and \mathbf{b} is $m \times 1$, show that \mathbf{b} lies in the column space of A if and only if $\operatorname{rank}[A \mathbf{b}]=\operatorname{rank} A$.

Exercise 5.4.15

a. Show that $A \mathbf{x}=\mathbf{b}$ has a solution if and only if $\operatorname{rank} A=\operatorname{rank}[A \mathbf{b}]$. [Hint: Exercises 5.4.12 and 5.4.14.]
b. If $A \mathbf{x}=\mathbf{b}$ has no solution, show that $\operatorname{rank}[A \mathbf{b}]=1+\operatorname{rank} A$.

Exercise 5.4.16 Let X be a $k \times m$ matrix. If I is the $m \times m$ identity matrix, show that $I+X^{T} X$ is invertible.
[Hint: $I+X^{T} X=A^{T} A$ where $A=\left[\begin{array}{c}I \\ X\end{array}\right]$ in block form.]

Exercise 5.4.17 If A is $m \times n$ of rank r, show that A can be factored as $A=P Q$ where P is $m \times r$ with r independent columns, and Q is $r \times n$ with r independent rows. [Hint: Let $U A V=\left[\begin{array}{rr}I_{r} & 0 \\ 0 & 0\end{array}\right]$ by Theorem 2.5.3, and write $U^{-1}=\left[\begin{array}{cc}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right]$ and $V^{-1}=\left[\begin{array}{ll}V_{1} & V_{2} \\ V_{3} & V_{4}\end{array}\right]$ in block form, where U_{1} and V_{1} are $r \times r$.]

Exercise 5.4.18

a. Show that if A and B have independent columns, so does $A B$.
b. Show that if A and B have independent rows, so does $A B$.

Exercise 5.4.19 A matrix obtained from A by deleting rows and columns is called a submatrix of A. If A has an invertible $k \times k$ submatrix, show that $\operatorname{rank} A \geq k$. [Hint: Show that row and column operations carry
$A \rightarrow\left[\begin{array}{rr}I_{k} & P \\ 0 & Q\end{array}\right]$ in block form.] Remark: It can be shown that rank A is the largest integer r such that A has an invertible $r \times r$ submatrix.

5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and dimension to clarify the diagonalization process, reveal some new results, and prove some theorems which could not be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and is used throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are $n \times n$ matrices, we say that A and B are similar, and write $A \sim B$, if $B=P^{-1} A P$ for some invertible matrix P.

Note that $A \sim B$ if and only if $B=Q A Q^{-1}$ where Q is invertible (write $P^{-1}=Q$). The language of similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only if it is similar to a diagonal matrix.

If $A \sim B$, then necessarily $B \sim A$. To see why, suppose that $B=P^{-1} A P$. Then $A=P B P^{-1}=Q^{-1} B Q$ where $Q=P^{-1}$ is invertible. This proves the second of the following properties of similarity (the others are left as an exercise):

$$
\begin{align*}
& \text { 1. } A \sim A \text { for all square matrices } A \text {. } \\
& \text { 2. If } A \sim B \text {, then } B \sim A \text {. } \tag{5.2}\\
& \text { 3. If } A \sim B \text { and } B \sim A \text {, then } A \sim C \text {. }
\end{align*}
$$

These properties are often expressed by saying that the similarity relation \sim is an equivalence relation on the set of $n \times n$ matrices. Here is an example showing how these properties are used.

